Диференциалы Повышеного Трения (LSD)

 
Диференциалы Повышеного Трения (LSD)
 
     
 
Классический дифференциал
 
     
 

Дифференциал — это (от лат. differentia - разность - различие).

Как только два колеса получили общую ось и появилась необходимость изменять направление движения, люди заметили, что при повороте повозки левое и правое колеса проходят различный путь, и, если они жестко закреплены на этой оси, одно из них пробуксовывает. Причем этот эффект не так уж ничтожен, как может показаться: например, если современный автомобиль среднего класса разворачивается в левую сторону, вывернув колеса на максимальный угол, то за время полного разворота (на 180 градусов) правое колесо проезжает более четырех "лишних" метров.

Впрочем, тогда, когда появился дифференциал, никакими автомобилями еще и не пахло: первое упоминание о похожей конструкции датируется 2600-м годом до нашей эры - она использовалась в Китае, на боевых колесницах (для чего, сейчас уже трудно сказать). Также механизм, примерно соответствующий современному устройству дифференциала, был предложен гениальным Леонардо да Винчи за четыреста лет до появления автомобилей, которые в нем нуждались. Наконец, дифференциал в том виде, в каком мы его знаем, был запатентован во Франции изобретателем Онесифором Пеккером в 1827 году, а первым его носителем считается машина австралийца Дэвида Ширера, построенная в 1897 году.

 
     
 

Коэффициент блокировки (К_b) - это отношение крутящего момента на отстающем колесе к моменту на забегающем. Его величина для симметричного дифференциала равна 1 (моментты на обоих колесах равны), для дифференциалов повышенного трения (см. ниже) К_b - 3-5.
Чем больше К_b, тем лучше проходимость автомобиля. Например, при большом коэффициенте блокировки ухудшаются управляемость и устойчивость траспортного средства при движении по асфальту. Это связано с тем, что на отстающем колесе момент в несколько раз больше и оно старается как бы "вытолкнуть" автомобиль из поворота. К тому же возрастает износ шин из-за частичной пробуксовки, нагрузки на элементы привода, снижается к.п.д., что приводит к увеличению расхода топлива.

 
     
 

Однако прошло еще немало лет, прежде чем дифференциал окончательно "прописался" в конструкции автомобиля: еще в 20-е годы прошлого века многие инженеры считали, что резиновые шины компенсируют разницу угловых скоростей, позволяя колесам буксовать при повороте без большого ущерба для автомобиля. И даже сейчас встречаются бездифференциальные конструкции, такие как спортивно-"игрушечные" карты, у которых задние колеса не могут вращаться независимо. Но на всех серьезных автомобилях главная задача - передача тяги на ведущие колеса с компенсацией возможного различия их скоростей - решается с помощью дифференциала.

В основе простейшего дифференциала лежит планетарный механизм, где крутящий момент на полуоси передается через шестерни-сателлиты. Не углубляясь в теорию, можно сказать, что действие этого механизма можно сравнить с весами: пока грузы на обеих чашках одинаковы, они неподвижны друг относительно друга, но как только одна из них перевешивает, конструкция приходит в движение и чашки перемещаются. Соответственно, пока оба колеса автомобиля находятся в одинаковых условиях, для их вращения необходимы одинаковые усилия, и сателлиты вращают обе полуоси одинаково, но если баланс нарушается, крутящий момент тут же передается на ту полуось (и, соответственно, колесо), которая вращается легче. Причем, исходя из конструктивных особенностей, дифференциал в этом случае является повышающим редуктором: если одно колесо неподвижно, то второе будет вращаться вдвое быстрее.

 
     
 

Дифференциал – это механическое устройство, которое передает крутящий момент с одного источника на два независимых потребителя таким образом, что угловые скорости вращения источника и обоих потребителей могут быть разными относительно друг друга. Такая передача момента возможна благодаря применению так называемого планетарного механизма. В автомобилестроении, дифференциал является одной из ключевых деталей трансмиссии. В первую очередь он служит для передачи момента от коробки передач к колёсам ведущего моста.


Крутящий момент - характеристика вращательного движения. Его величина равна произведению силы на плечо (расстояние от точки приложения силы до оси вращения) и измеряется в Нм (Ньютон на метр). Например, если двигатель развивает крутящий момент 100 Нм, значит, сила на плече в 1 м будет составлять 100 Н. (более подробно об этом можно прочесть здесь).

 

 
     
 

В этом и есть главный смысл и одновременно недостаток планетарного механизма: даже если попробовать резко, с пробуксовкой, стартовать на асфальте, чаще всего будет буксовать лишь одно колесо, поскольку фактически в этот момент только оно и является ведущим. А если покрытия разные (асфальт-лед, например), разница еще заметнее: попав на лед, одно из ведущих колес так и будет буксовать, а другое - спокойно стоять на асфальте. И даже полный привод не может кардинально изменить ситуацию: если он постоянный, автомобилю требуются целых три дифференциала - два межколесных и один межосевой, - поскольку при повороте скорости могут отличаться у всех ведущих колес. И если все эти дифференциалы обычные, так называемые свободные, то в худшем для водителя случае крутящий момент будет передаваться опять же на единственное колесо, причем самое легко вращающееся, читай - буксующее. Решением проблемы стали блокировки, к развитию конструкций которых, в сущности, и сводится многолетний процесс совершенствования дифференциалов.

 

В полноприводных автомобилях дифференциалом обычно оборудованы два моста, а зачастую дифференциал можно обнаружить еще и между мостами (межосевой дифференциал). Таким образом, мы получаем схему трансмиссии, в которой присутствуют целых три дифференциала: два мостовых и один межосевой. Последний необходим для постоянного движения с полным приводом и передачей момента на все четыре колеса. Ведь в повороте колёса рулевого моста (обычно переднего) имеют совсем другие угловые скорости, нежели чем колёса заднего моста.

 

Межосевой дифференциал призван передавать крутящий момент от коробки передач к обоим ведущим мостам с разным соотношением угловых скоростей. Такая схема с тремя дифференциалами является одной из самых распространённых схем для постоянного полного привода (Full time 4WD). Однако, это уже тема другого раздела. В данном разделе нас интересует дифференциал и его свойства. Возвращаясь к вышеописанному проблемному свойству планетарного механизма, интересно рассмотреть ситуацию, когда полноприводный автомобиль с межосевым дифференциалом одним из четырёх колёс попал на тот же лёд (или в скользкую яму). В этом случае дифференциал моста, колесо которого находится на льду, отдаст весь полученный крутящий момент на это колесо. Межосевой дифференциал, в свою очередь, тоже стремится передать крутящий момент туда, куда легче. Естественно, межосевому дифференциалу легче отдать момент на мост с прокручивающимся на льду колесом, нежели чем на мост, колёса которого имеют хорошее сцепление с дорогой и могут двигать автомобиль. В результате, весь крутящий момент от двигателя и коробки передач пойдёт на раскручивание единственного колеса, находящегося на льду. Остальные три колеса остановятся и не будут получать никакого крутящего момента от дифференциалов. Итог: из четырёх ведущих колёс осталось только одно, которое проскальзывает на льду - полноприводный автомобиль «застрял». Чтобы заставить дифференциалы передавать крутящий момент на колёса с более хорошим дорожным сцеплением были разработаны различные способы частичной и полной, ручной и автоматической блокировки дифференциалов, которые будут рассмотрены ниже.

Основной целью блокировки дифференциала является передача необходимого крутящего момента обоим его потребителям (полуосям или карданам). Существуют принципиально разные методы решения данной задачи.

 
     
 
Блокировка дифференциалов
 
     
 

Как было сказано выше, в любом автомобиле стандартный дифференциал устанавливается для распределения энергии двигателя между ведущими колесами. Стандартный дифференциал передаёт энергию двигателя колесу, которое испытывает меньшее сопротивление кручению. Это позволяет ведущим колёсам в повороте вращаться с разной скоростью и тратить меньше энергии на сопротивление. Сопротивление возникает, так как колёса при повороте описывают разные окружности.

 

Но встречаются ситуации, в которых данное свой ство дифференциала не всегда полезно, например, при прохождении поворота, когда автомобиль кренится на внешнюю сторону, происходит ослабление сцепления колёс внутренней стороны с дорогой. Колёса внутренней стороны "вывешиваются" из-за перераспределения веса, что вызывает избыточное вращение. Такая пробуксовка делает бесполезной попытку ускорения до тех пор, пока колёса не войдут в нормальное сцепление с дорогой. Дифференциал повышенного трения призван минимизировать такой вид пробуксовки.

 
     
 
 
     
  Дифференциал повышенного трения (ДПТ или Limited Slip Differentials (LSD)) по строению аналогичен нормальному дифференциалу.  
     
 

Классический дифференциал
Дифференциал повышеного трения
 
     
 
Как видно, полуоси находятся в скользящем зацеплении с одной группой дисков (на картинке диск "В"), а корпус дифференциала с другой (на картинке диск "А"). Ось сателлитов заключена в камеру, созданную парой нажимных колец. Нажимные кольца находятся в скользящем зацеплении с корпусом. Передача момента от двигателя к полуосям происходит через распорные кольца, посредством зацепления дисков "А" с дисками "В". При появлении крутящего момента ось сателлитов "распирает" нажимные кольца, которые в свою очередь прижимают диски "В" к дискам "А". Таким образом, обе полуоси ведущего привода равномерно распределяют момент между колёсами. Степень прижима (блокировки) зависит от величины переданного двигателем крутящего момента. Этот эффект ограничивает проскальзывание разгруженного в сильном повороте колеса. Обеспечивая блокировку при ускорении и торможении, дифференциал повышенного терния работает как обычный при отсутствии передаваемого двигателем момента.
 
     
 
Виды дифференциалов повышенного трения (1 way, 1.5 way и 2 way)
 
     
 

Многие производители дифференциалов повышенного трения делят свою продукцию в соответствии с режимом работы на 1 way, 1.5 way и 2 way. Это деление зависит от вида разреза в камере под ось сателлитов. Форма разреза непосредственно влияет на работу ДПТ. 1 way означает, что из-за формы разреза блокировка дифференциала происходит только при ускорении. Дифференциал с индексом 2 way блокируется как при ускорении, так и при торможении. Дифференциал 1.5 way также как и 2 way блокирует и при ускорении и при замедлении, но блокировка при замедлении имеет более "мягкий" характер. Этот тип обеспечивает "щадящую" блокировку при торможении и лучше всего подходит для новичков, и менее эффективен, чем 2 way в профессиональном автоспорте. Самое эффективное применение данного типа - это ведущая ось переднеприводного автомобиля.

 

Применение типа 1.5 way целесообразнее всего на автомобилях для дорог общего пользования. Более мягкая блокировка при торможении позволяет плавно "смещать" автомобиль в повороте при замедлении (чем при использовании типа 2 way).

 

Применение типа 2 way обеспечивает оптимальную блокировку при ускорении и замедлении. Идеально подходит для дрифтинга, особенно для пилотов, которые предпочитают постоянную блокировку при прохождении поворотов. Основное применение типа 2 way - автоспорт.

 
     
 
Сравнение дифференциалов повышенного трения
 
     
 
На сегодняшний день существует большое количество типов ДПТ и их производителей. Большинство дифференциалов повышенного трения применяемых в стандартной комплектации автомобиля, или опционно, имеют 2 сателлита. Такая конструкция не в состоянии обеспечить сильной блокировки, и скорее необходима для создания "спортивного" поведения автомобиля. Такая блокировка лучше, чем её отсутствие, но это не лучший вариант для профессиональных пилотов и для любителей дрифтинга.

Настоящий дифференциал повышенного трения должен иметь как минимум 4 сателлита. Во всём мире такая конструкция используется в ралли и в кольцевых автомобильных гонках. Линейность и степень блокировки ДПТ зависит от ряда параметров. Форма разреза камеры, размер дисков, коэффициент трения, порог срабатывания, характеристики смазочного масла - всё это влияет на характеристики ДПТ.
 
Виско-муфта, тип Торсена, винтовой тип - это типы ДПТ, которые устанавливают производители автомобиля. Эти типы широко распространены, так как имеют менее агрессивную степень блокировки и более просты в обслуживании, чем дисковые ДПТ. Однако, для достижения максимального контроля над автомобилем, например, в соревнованиях, производители автомобилей и тюнинг-ателье используют дифференциал дискового типа.
 
     
 
 
     
 

Различных блокировок великое множество, однако, по большому счету, все дифференциалы, кроме свободных, можно разделить на две основные группы - принудительно, жестко блокируемые и самоблокирующиеся. Более подробно каждый тип блокировок будет рассмотрен ниже.

 
     
 
Типы блокировок используемые в ДПТ
 
     
 
Полная (100%-я) ручная блокировка.
 
     
 

Английское название: Manual Operated Traction Adding Devices (MOTAD)
Принцип действия: сжатый воздух, соленоид, электромотор.

 

Полностью заблокированный дифференциал перестает выполнять свои функции и превращается в муфту, жестко связывающую полуоси (или карданы, если он межосевой), передавая им одинаковый крутящий момент с одинаковой угловой скоростью. Применяется как для мостовых, так и для межосевых дифференциалов.

 

Для того, чтобы полностью заблокировать классический дифференциал, достаточно либо заблокировать возможность вращения сателлитов, либо жестко соединить между собой чашку дифференциала с одной из полуосей. Такая блокировка, как правило, реализуется при помощи пневматического, электрического или гидравлического привода, управляемого водителем из салона автомобиля.. Включать подобного рода блокировки можно только при полной остановке, а пользоваться ими нужно крайне аккуратно, так как усилия мотора вполне достаточно, чтобы испортить исполнительный механизм. Применяют их, как правило на небольших скоростях, только для передвижения по труднопроходимой местности, так как при полной блокировке межколесного дифференциала (особенно впереди) автомобиль очень сильно теряет в управляемости – едет "плугом" прямо, а заблокированный межосевой дифференциал при езде по дорогам часто снижает ресурс трансмиссии просто катастрофически. Принудительная блокировка – удел настоящих внедорожников, типа Mercedes G-класса и Land Rover Defender, все три дифференциала которых могут быть полностью заблокированными. Проходимость в этом случае поистине феноменальна, но легковые автомобили, как правило, такими блокировками не снабжаются. На картинке изображена схема блокировки компании ARB для мостового дифференциала, в которой блокируются сателлиты.

 
     
 
 
 
Полная ручная блокировка дифференциала
 
     
 
Автоматическая блокировка с использованием Вискомуфты в качестве "Slip Limiter".
 
     
 

Английское название: Speed Sensing Traction Adding Devices (SSTAD) или Automatic Locking.

 

Принцип действия:

 

A) механический.
Дифференциал с автоматической блокировкой (англ.: Locker). В качестве механизма блокирования используются кулачковые муфты. При появлении взаимного проскальзывания колес, дифференциал автоматически блокируется на 100%.
 

B) силиконовая жидкость ( вискомуфта );
 

C) датчики скорости колес и тормозные механизмы. Пример использования: ML-320 компании Мерседес.

Конструкция большинства самоблокирующихся дифференциалов основана на использовании силы трения, поэтому их так и называют - дифференциалы повышенного трения. За границей принят другой термин - Limited Slip Differentials (сокращенно - LSD), то есть дифференциалы с ограниченным проскальзыванием, что, в сущности, то же самое. Один из наиболее простых и в силу этого распространенных вариантов - так называемая вискомуфта (она же вязкостная), в этом случае применяется блокировка одной из полуосей с чашкой дифференциала где вышеупомянутое трение создается внутри специальной жидкости. В обычном режиме эта муфта остается разомкнутой, но как только одна из полуосей начинает получать ощутимо больший момент и более высокую угловую скорость вращения относительно другой, жидкость начинает "сопротивляться", блокируя дифференциал, но не жестко, а плавно, причем коэффициент трения и, соответственно, степень блокировки увеличивается с ростом разницы в скоростях. А по мере выравнивания угловых скоростей трение внутри вискомуфты начинает падать, что ведет к ее постепенному размыканию и отключению блокировки.

 

Вискомуфта монтируется соосно полуоси таким образом, что один её привод жестко крепится к чашке дифференциала, а другой – к полуоси. Применяются обычно для межосевых дифференциалов (их конструкция слишком массивна для установки на мостовой редуктор) как дорожных полноприводных машин, таких как Subaru Impreza, Mitsubishi Eclipse GSX, так и "паркетников" типа Toyota RAV4, Lexus RX300 и т.п.. На настоящем бездорожье вискомуфта не справляется с постоянной сменой условий сцепления колес с грунтом, запаздывает при включении, перегревается и в конечном счете может выйти из строя.

 
     
 
 
 
Вискомуфта
 
     
 
Кулачковые и зубчатые автоматические блокировки.
 
     
 

Принцип работы этих блокировок достаточно прост. Вместо классического шестеренчатого планетарного механизма используются кулачковые или зубчатые пары, которые при небольшой разнице в угловых скоростях полуосей имеют возможность взаимно проворачиваться (перескакивать), а при пробуксовке заклиниваются и блокируют полуоси друг с другом. Достоинство таких схем - простота конструкции, а главный недостаток - "грубое" срабатывание блокировок, делающее невозможным их применение на гражданских автомобилях. Некоторые экземпляры просто отключают одну из полуосей в момент возникновения небольшой разницы скоростей. Именно поэтому, штатно такими блокировками оборудуются только дифференциалы военной и специальной техники (БТР и.т.п.) На картинках изображены (слева на право): кулачковая блокировка, Detroit Locker и Detroit E-Z Locker. (компания Tractech).

 

Lock Right, EZ-locker и некоторые версии от Detroit Locker являются не самоблокирующимися дифференциалами в широком и обычном понимании слова, а скорее наоборот: "разблокировками". Их принцип действия основан на нормально заблокированном состоянии полуосей с открыванием дифференциала с изменением линейных скоростей колес одной оси. Отсюда конструктивные щелчки в редукторе, вызванные перескакиванием соответствующего механизва открытия дифференциала.

 
     
 

 
     
 
Самоблокирующиеся дифференциалы.
 
     
 

Механические самоблокирующиеся дифференциалы можно разделить на два типа speed sensitive - срабатывающие от разницы в угловых скоростях вращения полуосей, и torque sensitive - срабатывающих от разницы передаваемого на полуоси крутящего момента.

Speed sensitive

 

Английское название: Friction Based Traction Adding Devices (FBTAD) или limited Slip Differential (LSD).

Дифференциал повышенного трения . Обычно используются фрикционные диски, конусы или шестерни для снижения взаимного проскальзывания колес. Не блокируют дифференциал на 100 %.

 

Конструкиция чувствительных к скорости дифференциалов представляют собой обычные планетарные дифференциалы, только снабженные блоками фрикционных пластин, поэтому их именуют еще friction based LSD (см. схемы в начале статьи). Когда дифференциал пытается перераспределить крутящий момент на одну из полуосей и начинает возникать разница в угловых скоростях полуосей и чашки, пластины под действием силы трения сдерживают возникновение этой разницы. Разумеется, когда величина крутящего момента превосходит силу трения пластин, всё вращение передаётся на более легко вращаемую полуось.

 

Такие блокировки работают в сравнительно небольшом диапазоне отношения моментов. Довольно часто, фрикционные блоки подпружинивают чтобы увеличить их коээфициент сцепления. Данные блокировки работают в сравнительно небольшом диапазоне отношения моментов и кардинально повлиять на управляемость или проходимость машины не в состоянии. Тем не менее, подобные дифференциалы штатно устанавливаются в задних мостах многих внедорожников - Toyota 4Runner, Nissan Terrano, Kia Sportage. Дальнейшим развитием этой конструкции можно считать так называемый героторный дифференциал, где пакет фрикционов LSD дополнен устройством блокировки, состоящим из насоса с поршнем: при возникновении разности угловых скоростей насос нагнетает рабочую жидкость (масло) и сдавливает фрикционный блок, многократно увеличивая трение и блокируя дифференциал. Под названием Hydra-Lock такая конструкция используется на внедорожниках Jeep корпорации DaimlerChrysler.

 
     
 
 
     
 

Torque sesitive

Английское название: Torque Sensing Traction Adding Devices (TSTAD).
Принцип действия: червячные шестерни. Изобретен компанией Gleason в 50-е годы. Не блокируют дифференциал на 100 %.

Дифференциалы системы Torsen, на самом деле это просто сокращение от вышеупомянутого Torque sensitive, и на данный момент это одна из самых эффективных и технологичных форм блокировки дифференциалов. Принцип ее работы основан на свойствах червячной передачи, о которых мы здесь не будем распространяться, ограничимся лишь описанием свойств и области применения трех основных разновидностей этой конструкции. Механизмы, выпускаемые под этой торговой маркой, имееют два типа конструкций.

 

Дифференциалы типа Т-1 - самые мощные, они способны переваривать самые большие перепады крутящего момента – от 2,5:1 до 5:1, - их можно встретить на различных машинах, но стали известными они в первую очередь благодаря компании Audi и технологии Quattro, где они используются в качестве межосевых. Другие компании использовали Т-1 в основном в задней оси спортивных моделей – таковы, например, выпускавшиеся в 90-е годы прошлого века Mazda RX-7 (заднеприводная) и Toyota Celica GT-4 (полноприводная).

 

Сателлиты расположеныв корпусе перпендикулярно его оси и объединены между собой попарно с помощью прямозубого зацепления, а с полуосевыми шестернями связаны червячным зацеплением. На повороте полуосевая шестерня, связанная с отстающим колесом, поворачивает входящий с ней в зацепление сателлит, он, в свою очередь, вращает второй сателлит и другую полуосевую шестерню. Такой "цепочкой" колесам автомобиля обеспечивается возможность вращаться с разной скоростью. Силы трения, возникающие в червячном зацеплении от разности моментов на колесах, осуществляют частичную блокировку дифференциала.

 

Применение комплектов сателлитов и шестерен с различным профилем червячного зацепления дает возможность изменять коэффициент блокировки. Недостаток этого вариант - сложность конструкции и ее сборки.

 

Дифференциал T-2 имеет меньший диапазон блокировки, однако он более чувствителен к разнице передаваемого момента и срабатывает раньше. Такая схема также используется в полноприводных моделях Audi, а кроме них - в BMW Z3, Honda S2000, Toyota/Lexus (как на джипах, так и на дорожных автомобилях), Volkswagen Passat 4Motion и даже на дорожном варианте культового Hummer (вариант для военных оснащен дифференциалом Т-1). Наконец, третий тип, Torsen Т-3, используется в основном для межосевых дифференциалов: планетарная структура конструкции позволяет сместить начальное распределение момента в пользу одной из осей, а срабатывание частичной блокировки происходит при 20-30-процентной разнице в передаваемых на полуоси моментах. Так сделано на Toyota 4Runner: в обычных режимах 40 процентов момента передается на передние колеса, 60 - на задние, а при частичной блокировке это соотношение может изменяться от 53:47 до 29:71. Эти дифференциалы достаточно молоды и только начинают завоевывать популярность: так, Audi, известный апологет равного распределения крутящего момента по осям, в новых моделях собирается изменить своим традициям в сторону "заднеприводности".

 

Сателлиты расположены параллельно оси корпуса дифференциала в его отверстиях и соединены попарно между собой и с полуосевыми шестернями винтовым зацеплением. Работа механизма на поворотах и частичная блокировка осуществляются так же, как у "Квайфа". Этот вариант конструкции менее сложный, кроме того позволяет уменьшить диаметр корпуса дифференциала.

 

Третий тип производимый компанией Zexel Torsen (Т-3) и используется в основном для межосевых дифференциалов. Планетарная структура конструкции позволяет сместить номинальное распределение момента в пользу одной из осей. Например, используемый на 4Runner 4-го поколения дифференциал Т-3 имеет номинальное распределение момента 40/60 в пользу задней оси. Соответственно, смещен и весь диапазон работы частичной блокировки: от (front/rear) 53/47 до 29/71. В целом, смещение номинального распределения момента между осями возможно в диапазоне от 65/35 до 35/65. Срабатывание частичной блокировки происходит при 20-30% разнице в передаваемых на оси моментах. Так же, подобная структура дифференциала делает его компактным, что в свою очередь, упрощает конструкцию и улучшает компоновку раздаточной коробки.

 

Данные дифференциалы не требуют применения специальных присадок к маслу (в отличии от friction-based дифференциалов), однако лучше использовать качественное масло для нагруженных гипоидных передач.

 
     
 
 
 
Принцип работы дифференциала TORDEN
 
     
 

Наряду с дифференциалами марки "Торсен" (Torsen) конструкция механизма, зарегистрированного прод торговой маркой "Квайф"(Quaife),. Сателиты у него расположены в два ряда параллельно оси вращения корпуса. Причем они крепяться не на осях, а находятся в закрытых с обоих концов отверсиях корпуса. Правый ряд сателитов входит в зацепление с правой полуосевой шестреней, левый - с левой. Кроме того, сателиты из разных рядов зацепляются между собой попарно. Все зубчатые колеса имеют винтовые зубья.

 
 
 
 
Схема дифференциала Quaife
 
     
 

Когда одно из колес начинает отставать, связанная с ним полуосевая шестерня начинает вращаться медленнее корпуса и поворачивать входящий с ней в зацепление сателлит. Он передает движение связанному с ним сателлитру из другого ряда. а тот, в свою очередь, на полуосевую шестерню. Так обеспечиваются разные обороты колес на повороте. Благодаря разности крутящих моментов на колесах в винтовом зацеплении возникают осевые и радиальные силы, прижимающие полуосевые шестерни и сателлиты торцами к корпусу. Последние также прижимаются вершинами зубьев к поверхности отверстий, в которых они расположены. За счет этого возникают силы, осуществляющие частичную блокировку, что увеличивает силу тяги на отстающем колесе и, соответственно, суммарную силу тяги автомобиля, повышая его проходимость.

 

Величина коэффициента блокировки зависит от угла наклона зубьев сателлитов и полуосевых шестерен. Устанавливая в корпус комплекты сателлитов и шестерен с различным углом наклона зубьев, изменяют коэффициент блокировки в зависимости от характеристик автомобиля и условий его применения.

 
     
 

Квайф
Торсек
 
     
 
Электронные системы управления блокировкой дифференциала
 
     
 

В современном автомобилестроении применяется всё больше и больше электронных систем контроля за движением автомобиля. Уже редко можно встретить автомобили, не оснащенные системой ABS (не дающей колёсам заблокироваться при торможении). Более того, уже с конца 80-х годов прошлого века передовые производители стали комплектовать свои флагманские модели системами контроля тяги и сцепления колёс - Traction Control. Например, Тойота установила систему Traction Control на Lexus LS400 в 1989 (90) году. Принцип работы такой системы прост: универсальные (так же обслуживают ABS) датчики вращения, установленные на контролируемых колёсах, фиксируют начало пробуксовки одного колеса оси относительно другого и система автоматически притормаживает забуксовавшее колесо, тем самым увеличивая на него нагрузку и вынуждая дифференциал отдать момент на колесо с хорошим сцеплением. При сильной пробуксовке, система так же может ограничивать подачу топлива в цилиндры. Работа такой системы очень эффективна, особенно на заднеприводных автомобилях. Как правило, при желании такую систему можно принудительно деактивировать кнопкой на приборной панели.

 

Со временем, электронная система контроля тормозных усилий совершенствовалась и к ней добавлялись всё новые функции, работающие наряду с ABS и TRAC. (например управление разностью разблокировки рулевых колёс для более успешного прохождения поворотов). У всех производителей эти функции назывались по разному, однако смысл при этом оставался одинаковым. И вот, данные системы стали устанавливаться на полноприводные автомобили и внедорожники, причем в некоторых случаях они являются единственным средством контроля тяги и перераспределения крутящего момента между осями и колёсами (Mercedes ML, BMW X5). В случае, если внедорожник оснащен более серьёзными средствами распределения крутящего момента (жесткими блокировками и/или самоблокирующимися дифференциалами), то электронная система контроля тормозных усилий очень удачно дополняет эти средства. Хороший пример тому - великолепная управляемость и проходимость последнего поколения Тойотовских внедорожников 4Runner (Hilux Surf), Prado, Lexus GX470. Являясь представителями одной платформы, они обладают межосевым дифференциалом Torsen T-3 с возможностью жесткой блокировки, а так же электронной системой контроля тормозных усилий и тяги со множеством функций, помогающих водителю управлять автомобилем.

Не отстают и чисто "асфальтовые" автомобили: для них совершенство электронных трансмиссий, огромную роль в работе которых играют дифференциалы, является важнейшим конкурентным преимуществом. Так, система полного привода ATTESA ETS (Advanced Total Traction Engineering System for All Electronic Torque Split) на легендарных Nissan Skyline GT-R позволяет стартовать на полном приводе, когда наиболее важно реализовать большой крутящий момент без пробуксовки, а затем двигаться в «штатных» режимах исключительно на заднем, минимизируя потери в трансмиссии. Как только датчики фиксируют потерю сцепления задними колесами, система за сотые доли секунды подключает переднюю ось, практически мгновенно передавая на нее до 50% крутящего момента. Еще более совершенна система полного привода на последних «эволюциях» от Mitsubishi с «активными» дифференциалами - межосевым ACD и задним межколесным Super AYC. Прошлой зимой мы имели возможность испытать эту трансмиссию в деле и можем утверждать – электроника дошла до той ступени развития, когда отказываться от нее не стоит даже опытному водителю. А новейшая "умная" трансмиссия компании Honda имеет практически по отдельному дифференциалу с электронным управлением на каждое колесо.

 
     
 
Особенности эксплуатации дифференциалов повышенyого трения
 
     
 

Как определить стоит ли блокировка в Вашем мосте?


В некоторые автомобили дифференциал повышенного трения (LSD) ставят еще на заводе. Либо его мог установить бывший владелец.
Все далее описанные способы производятся при нейтральном положении трансмиссии!

 

1. Для начала оторвите от земли любым доступным способом оба колеса моста.
Если при вращении одного колеса моста, другое крутится в обратную сторону - в мосте ничего нет.
Либо второе. LSD, основанный на принципе дисков сцепления, достаточно быстро изнашивается и мост начинает работать просто как с открытым дифференциалом. В этом случае определить стоит ли там что-нибудь (особенно, если Вы приобрели подержанный автомобиль) можно только при вскрытии. Если другое колесо крутится в ту же сторону - Вы счастливый обладатель дифференциала повышенного трения.

 

2. Оторвите от земли любым доступным способом одно колесо моста. Второе стоит на земле.
Если при вращении вывешенного колеса слышатся треск или щелчки (вращение при этоим затруднено) - это нормально для автоматического локера, таких как Lock Right, Detroit E-Z, Soft Locker, Gearless Locker...

 

Какую смазку использовать в мостах с блокировками?
Используйте синтетику ( это дорого) 85W140 или подобную, с пометкой: "Developed or designed for Limit Slip Differentials...." или "compatible with LSD differentials...."
В другом случае (это дешевле) используйте 75W140 минеральное с добавками для LSD (если нет вышеуказанного обозначения).... Например, Mopar Hypoid Gear Additive Friction Modifier
У MOBIL этот продукт называется Mobilube SHC 75W90LS - это масло для дифференциалов повышенного трения (самоблокирующихся) и механическитх КПП с определёнными требованиями.