Система газораспределения MIVEC

 
Описание Системы Газораспределения MIVEC
 
     
   
 
Технология MIVEC ( Mitsubishi Innovative Valve timing Electronic Control system) , именуемая производителем как Инновационная Электронная Система Синхронизации Работы Клапанов, разработана инженерами Mitsubishi Motors еще в 1992 году. В серийное производство двигатель MIVEC попал в 1993 году и устанавливался изначально на Lancer, Mirage и Colt.

Технология сразу стала лидером в классе экономичных двигателей; при этом работа силового агрегата не стала менее мощной. Работа распределительного вала клапана рассчитана на два режима – на высоких скоростях и на малых скоростях. Существует также третий режим модулированного рабочего объема двигателя. В зависимости от условий на дороге, переключение с низких оборотов на высокие проходит очень плавно, позволяя водителю, например, быстро разгоняться с места, переходить на магистральную трассу или ускоряться для обгона другого автомобиля. Поскольку водительские амбиции не всегда совместимы с такими понятиями, как экономия топлива и экологично-приемлемая работа двигателя, система MIVEC легко позволяет достигнуть этих целей.

Изменяемые профили кулачка и коромысла клапана обеспечивают наиболее продуктивную функциональность в режимах малых и высоких скоростей. В режиме модулированного рабочего объема двигателя используется только два из четырех существующих цилиндров, что значительно снижает потерю мощности. В дополнение, снижается также потеря энергии из-за трения в двигателе. Для наиболее эффективного сгорания топлива в двигателе используется ведущая технология управления подачей воздуха в цилиндры.

На низких скоростях клапанный распределительный вал двигается с малой и средней амплитудой, что помогает достичь эффективного сгорания топлива, не влияя при этом на экономичность двигателя, выброс выхлопных газов и на крутящий момент. В свою очередь, в режиме высоких скоростей увеличение времени единичной подачи топлива в клапаны, а также увеличение амплитуды подъема вала нагнетает в клапан больший объем воздуха. Это обеспечивает одну из наилучших мощностей в своем классе двигателей.

 
     
 
 
 
Двигатель с ситемой MIVEC
 
     
 
Принцип MIVEC
 
     
 

Система MIVEC обеспечивает два режима работы клапанов, низкоскоростной режим — два клапана каждого цилиндра имеют разный подъем, и высокоскоростной режим — оба клапана имеют равный подъем. Один из двух режимов выбирается автоматически в зависимости от условий работы двигателя. Кривые подъема клапана показаны на рисунке.

Когда скорость двигателя относительно низка, разница в подъеме клапанов стабилизирует сгорание, способствует уменьшению расхода топлива, уменьшению эмиссии и повышает вращающий момент. Когда скорость двигателя относительно высока, увеличение времени открытия клапанов и высоты подъема последних, значительно увеличивает объем впуска и выпуска топливно-воздушной смеси.

 
 
Режим
Эффект
Мощность
Экономичность
Токсичность (холодный старт)
Низкая скорость
Повышение стабильности горения посредством снижения внутреннего EGR
+
+
+
 
Повышение стабильности горения посредством ускоренного впрыска
 
+
+
 
Минимизация трения посредством малого подъема клапанов
 
+
 
Высокая скорость
Повышение отдачи от объема посредством улучшения распыления смеси
+
 
 
 
Повышения отдачи от объема посредством эффекта динамического разрежения
+
 
 
 
Повышение отдачи от объема посредством высокого подъема клапанов
+
 
 
 
     
 
Конструкция системы MIVEC
 
     
 

В данном случае рассматривается двигатель с одним распредвалом (SOHC), конструкция MIVEC для которого сложнее, чем для двигателя с двумя распредвалами (DOHC, как у Кольта), поскольку для управления клапанами используются промежуточные валы (коромысла) mikedVSmiked.

Для того, чтобы внедрить систему MIVEC без изменения основной конструкции существующей головки блока цилиндров (SOHC 4G69), изменены профили новых кулачков механизма газораспределения (развитие существующей технологии DOHC MIVEC). Как показано в fig 5, механизм клапана для каждого цилиндра включает «низкопрофильный кулачок» (low-lift) и соответствующий рокер коромысла для одного клапана, «кулачок среднего профиля» (medium-lift) и соответствующий рокер коромысла для другого клапана, «высокопрофильный кулачок» (high-lift), который центрально расположен между низким и средним кулачком и Т-образный рычаг, который является единым целым с «высокопрофильным кулачком».

 
     
 
 
     
 
Когда скорость двигателя относительно низка, крыло Т-образного рычага двигается без какого либо воздействия на рокеры; впускные клапана соответственно управляются низко- и среднепрофильными кулачками. Когда двигатель достигает предопределенную более высокую скорость, поршни в коромыслах двигаются гидравлическим давлением масла так, что Т-образный рычаг начинает давить на оба рокера и оба клапана таким образом управляются высокопрофильным кулачком. Форма рокеров и кулачков была оптимизирована с помощью анализа поведения всей структуры и конструкции на компьютерной модели, показанной на fig 6. Переключение профилей кулачков происходит на скорости двигателя 3500 об/мин (скорость на которой кривая вращающего момента для низкоскоростного режима пересекает кривую вращающего момента для высокоскоростного режима).
 
     
 
 
     
 
Система MIVEC не включает в себя механизмов переключения профилей кулачков по времени, поэтому иногда возможно отодвигание Т-образного рычага поршнями при определенном давлении масла. Таким образом, высокоскоростной режим устанавливается в следующем (по порядку работы зажигания) цилиндре. Встроенный в профиля аккумулятор ограничивает течение масла до 0.6% от хода управляющего поршня для всех 4 цилиндров и таким образом повышает износостойкость системы.
 
     
 
 
     
 
Эффект системы MIVEC
 
     
 
Мощность. Благодаря увеличению подъему клапанов и, соответственно, увеличению зоны открытия в высокоскоростном режиме скорость подачи топливно-воздушной смеси чрезвычайно высока, что значительно увеличивает объем впуска и приводит к увеличению максимальной мощности, сравнимой с системами охлаждения впускного воздуха и высококомпрессионными двигателями GDI. Распределение компонентов улучшения максимальной мощности показано на рисунке:
 
 
 
 
 
 
     
 
Экономичность. В диапазоне, где двигатель использует низкоскоростные кулачки, подача в цилиндры однородной смеси топливо-воздух обеспечивает высокую стабильность сгорания. Рециркуляция отработанных газов (EGR) также способствует снижению расхода топлива. Подача в цилиндр воздуха и коэффициент подачи отработанных газов, обычно имеют обратное отношение, но оба были оптимизированы посредством компьютерного анализа.
 
     
 
 
     
 
Уменьшение токсичности отработанных газов. Увеличенная подача в цилиндры обедненной смеси воздух-топливо и позднее зажигание во время холодного пуска, позволяет достаточно быстро нагреть катализатор до рабочей температуры (fig 10). Для того чтобы уменьшить потери КПД (главным образом потери вращающего момента на низких скоростях двигателя) определяемые сопротивлением системы выпуска, был применен двойной выпускной коллектор, включающий передний катализатор. Благодаря чему был достигнут уровень «75%-level reduction» по японским стандартам.